Automatic Image Annotation using SURF Features

نویسندگان

  • Tuhin Shukla
  • Rajiv Gandhi
  • Nishchol Mishra
  • Sanjeev Sharma
چکیده

Automatic image annotation is a challenging field with a far reaching effect. As the world moves towards becoming more and more dependent on digital technologies every day, use of machine to automatically annotate images can be proved as demanding in many fields of image processing. Automatic Image Annotation reduces the gap between low level image features and high level image semantics. Utilization of Speeded Up Robust Features (SURF) in automatic image annotation is very appealing due to the fact that SURF is scale and rotation invariant detector and descriptor and is much faster than any other schemes. Unlike other methods SURF features use the entire image instead of segmented blocks of image. That is why annotation of images by using SURF can be considered as more accurate. In this paper, a SVM based image annotation approach is proposed that uses SURF features of image for annotation purpose. The experiments suggest that the method proposed is much more efficient than other methods. General Terms Pattern Recognition, Image Annotation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tags Re-ranking Using Multi-level Features in Automatic Image Annotation

Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...

متن کامل

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

Search-based automatic image annotation using geotagged community photos

In the Web 2.0 era, platforms for sharing and collaboratively annotating images with keywords, called tags, became very popular. Tags are a powerful means for organizing and retrieving photos. However, manual tagging is time consuming. Recently, the sheer amount of user-tagged photos available on the Web encouraged researchers to explore new techniques for automatic image annotation. The idea i...

متن کامل

Search-based automatic image annotation using geotagged community photos. (Recherche basée sur l'annotation automatique des images à l'aide de photos collaboratives géolocalisées)

In the Web 2.0 era, platforms for sharing and collaboratively annotating images with keywords, called tags, became very popular. Tags are a powerful means for organizing and retrieving photos. However, manual tagging is time consuming. Recently, the sheer amount of user-tagged photos available on the Web encouraged researchers to explore new techniques for automatic image annotation. The idea i...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013